Macgence

Données d'entraînement à l'IA

Source de données personnalisée

Créez des ensembles de données personnalisés.

Annotation et amélioration des données

Étiqueter et affiner les données.

Validation des données

Renforcer la qualité des données.

RLHF

Améliorez la précision de l'IA.

Licence de données

Accédez à des ensembles de données premium sans effort.

Foule en tant que service

Échelle avec des données mondiales.

Modération Du Contenu

Gardez le contenu en sécurité et conforme.

Services Linguistiques

Traduction

Briser les barrières linguistiques.

Transcription

Transformer la parole en texte.

Doublage

Localisez avec des voix authentiques.

Sous-titrage

Améliorer l’accessibilité du contenu.

Correction des épreuves

Perfectionnez chaque mot.

vérification des comptes

Garantir une qualité de premier ordre.

Construire l'IA

Exploration Web / Extraction de données

Collectez des données Web sans effort.

IA hyper-personnalisée

Créez des expériences d’IA sur mesure.

Ingénierie sur mesure

Créez des solutions d’IA uniques.

Agents IA

Déployez des assistants IA intelligents.

Transformation numérique de l'IA

Automatisez la croissance de votre entreprise.

Augmentation des talents

Évoluez avec l'expertise de l'IA.

Évaluation du modèle

Évaluer et affiner les modèles d’IA.

Automatisation

Optimisez les flux de travail de manière transparente.

Cas d'usage

Vision par ordinateur

Détecter, classer et analyser les images.

IA conversationnelle

Permettez des interactions intelligentes et humaines.

Traitement du langage naturel (PNL)

Décoder et traiter le langage.

Fusion de capteurs

Intégrer et améliorer les données des capteurs.

IA générative

Créez du contenu alimenté par l'IA.

IA de santé

Obtenez une analyse médicale avec l'IA.

ADAS

Assistance avancée à la conduite.

Industries

Automobile

Intégrez l’IA pour une conduite plus sûre et plus intelligente.

Mobilier Médical

Diagnostic de puissance avec une IA de pointe.

Commerce de détail/e-commerce

Personnalisez vos achats grâce à l'intelligence artificielle.

AR / VR

Créez des expériences immersives de niveau supérieur.

Geospatial

Cartographiez, suivez et optimisez les emplacements.

Banking & Finance

Automatisez les risques, la fraude et les transactions.

Défense

Renforcez la sécurité nationale grâce à l’IA.

Compétences

Génération de modèles gérés

Développez des modèles d’IA conçus pour vous.

Validation du modèle

Testez, améliorez et optimisez l'IA.

IA d'entreprise

Développez votre entreprise grâce à des solutions basées sur l’IA.

Augmentation de l'IA générative et du LLM

Boostez le potentiel créatif de l'IA.

Collecte de données de capteur

Capturez des informations sur les données en temps réel.

Véhicule autonome

Former l’IA pour une conduite autonome efficace.

Marché de données

Explorez des ensembles de données premium prêts pour l'IA.

Outil d'annotation

Étiquetez les données avec précision.

Outil RLHF

Entraînez l'IA avec des retours humains réels.

Outil de transcription

Convertissez la parole en texte impeccable.

À propos de Macgence

Découvrez notre entreprise

Dans les médias

Faits marquants de la couverture médiatique.

Carrières

Explorez les opportunités de carrière.

Offres d'emploi

Postes ouverts disponibles dès maintenant

Ressources

Études de cas, blogs et rapports de recherche

Études de cas

Le succès alimenté par des données de précision

Blog

Informations et dernières mises à jour.

Rapport de recherche

Analyse détaillée de l'industrie.

De nos jours, plusieurs organismes de santé transfèrent leurs opérations vers des plateformes numériques. Avec ce changement, l’efficacité de tous les processus médicaux a augmenté. Il faut savoir que les données liées aux soins de santé contiennent des informations sensibles. Il comprend des informations personnellement identifiables (PII) et des informations de santé protégées (PHI). L’utilisation de ces données sur les plateformes numériques suscite des inquiétudes quant à la sécurité de ces données sensibles. Désidentification des données médicales vient à la rescousse ici. Il assure la sauvegarde des données des patients sans inhiber le processus d’analyse et de recherche des données. 

Dans ce blog, approfondissons la désidentification des données médicales. Continuez à lire et continuez à apprendre !

Qu’est-ce que l’anonymisation des données médicales ?

Cette technique est utilisée pour modifier ou supprimer les informations personnelles des patients d'un dossier médical utilisé pour fournir un diagnostic ou un traitement à un individu. De plus, l’objectif principal de la désidentification des données est de préserver la vie privée du patient. Après désidentification, les ensembles de données peuvent également être utilisés à des fins de recherche. 

Les hôpitaux suivent généralement la pratique de désidentification des données médicales avant d’utiliser ou de fournir un ensemble de données particulier à des fins de recherche. La désidentification des données médicales garantit la confidentialité des patients et fournit en même temps des informations cruciales pour une utilisation future. Si vous cherchez à obtenir des ensembles de données de qualité pour entraîner votre modèle d'IA, Macgence est votre option privilégiée. Pour plus d’informations, connectez-vous à www.macgence.com. 

Pourquoi l’anonymisation des données est utilisée dans le domaine médical ?

Les dossiers médicaux contiennent de nombreuses informations sensibles sur les patients. Ces informations comprennent des détails tels que leur nom, leur adresse, leurs dossiers médicaux antérieurs, des informations financières liées aux soins de santé, leur statut d'assurance, etc. Ces informations sont assez sensibles et ne doivent pas être partagées. 

Toutefois, à des fins de recherche, des données sont nécessaires. Ainsi, la désidentification des données médicales supprime le PHI des ensembles de données et le rend apte à des fins de recherche. Une telle collection de la médecine les données peuvent contribuer à dynamiser le processus de recherche clinique et apporteront également une immense valeur à la communauté médicale. 

Méthodes d’anonymisation des données

Dans un jeu de données médicales, il existe deux types d’identifiants : directs et indirects. Avant de démarrer le processus, il faut savoir clairement quel type d’identifiant doit être masqué ou supprimé. 

  1. Identifiants directs : Ceux-ci incluent des noms, des numéros de téléphone, des e-mails et bien plus encore qui peuvent directement pointer vers une personne. 
  1. Identifiants indirects : Il s'agit notamment de données démographiques et économiques. Ces informations ne permettent pas d'identifier directement une personne. Les identifiants indirects sont très précieux pour la recherche et l’analyse médicales. 

Vous trouverez ci-dessous certaines des méthodes de désidentification des données les plus courantes :

  1. Confidentialité différentielle: Dans cette méthode, les modèles de données sont analysés sans exposer aucune information personnelle des patients.
  2. Pseudonymisation: Cette méthode implique le remplacement des identifiants uniques par certains codes/ID temporaires généralisés.
  3. Omission: Comme son nom l'indique, cette méthode supprime simplement les identifiants directs tels que le nom, le numéro de téléphone, etc. d'un ensemble de données.
  4. Rédaction: Il est utilisé pour masquer ou effacer plusieurs types d'identifiants des enregistrements, notamment le texte, les images et l'audio, à l'aide de la pixellisation. 
  5. Généralisation: Dans cette méthode de désidentification médicale, les données précises sont remplacées par des catégories plus larges. Par exemple, les villes exactes et les codes PIN sont remplacés uniquement par le nom de l'État ou du pays. 
  6. Swapping: Dans ce processus, les points de données sont échangés entre les individus, comme les salaires, pour maintenir l'intégrité des données globales.
  7. Micro-agrégation: Dans ce processus de désidentification médicale, les valeurs numériques similaires sont regroupées et remplacées par la moyenne du groupe. 

Il existe de nombreuses autres méthodes médicales de désidentification, mais celles-ci sont les plus utilisées. Ces méthodes aident à maintenir l'anonymat des informations personnelles des personnes tout en fournissant des données adaptées à des fins de recherche. 

Avantages de l’anonymisation des données médicales

  1. Confidentialité des données: Comme toutes les informations personnelles des patients sont supprimées des ensembles de données, leur vie privée est protégée. Après désidentification des données médicales, les ensembles de données peuvent même être utilisés à des fins de recherche.
  2. Favorise le partage de données : Les données anonymisées peuvent être partagées entre les organisations. Cela permet à différents organismes de soins de santé de collaborer, ce qui est crucial pour le développement de meilleures solutions de soins de santé.
  3. Permet de déclencher des alertes de santé publique : À l’aide de données anonymisées, les chercheurs peuvent repérer des tendances et émettre des alertes de santé publique en fonction de celles-ci. 
  4. Aide à améliorer les soins de santé : Les données anonymisées permettent aux chercheurs d’obtenir des informations médicales plus approfondies ; par conséquent, cela conduit à des traitements médicaux meilleurs et fondés sur la recherche.

Pourquoi Macgence ?

Donc, tout était question de la désidentification des données médicales et comment elle joue un rôle crucial dans l’évolution de la recherche médicale. Si vous souhaitez anonymiser, structurer ou déstructurer vos données médicales, consultez Macgence. Nous fournissons la meilleure formation en IA ensembles de données sur l'ensemble du marché. 

Avec Macgence, vous bénéficiez d'une qualité, d'une évolutivité, d'une expertise et d'un support exceptionnels. Que vous soyez un chercheur médical individuel ou que vous possédiez un établissement médical, Macgence est toujours à vos côtés.

Nous nous engageons à respecter toutes les règles d'éthique afin de pouvoir fournir des résultats de qualité à nos clients. Macgence est même conforme aux réglementations ISO-27001, SOC II, GDPR et HIPAA. Contactez-nous aujourd'hui à www.macgence.com

FAQ

Q- Qu’est-ce que la désidentification des données médicales ?

Réponse : – Il s'agit du processus de suppression des données personnelles des patients d'un dossier médical. Par conséquent, la dépersonnalisation des données médicales est effectuée pour rendre les ensembles de données plus adaptés à la recherche.

Q- Pourquoi la désidentification des données médicales est-elle importante ?

Réponse : – La désidentification des données médicales est importante car elle met des ensembles de données à la disposition des chercheurs. En outre, cela restreint la cartographie des individus à partir d’ensembles de données médicales.

Q- Que sont les identifiants directs et indirects ?

Réponse : – Les identifiants directs incluent des informations qui peuvent directement pointer vers une personne, par exemple des noms, des numéros de téléphone, des e-mails, etc. Les identifiants indirects en revanche inclure des données démographiques et économiques. Ces informations ne permettent pas d'identifier directement une personne.

Q- Comment fonctionne la pseudo-dynamisation ?

Réponse : – En pseudo-dynamisation, les identifiants uniques sont remplacés par des valeurs généralisées.

Q- Existe-t-il une obligation légale de désidentification des données médicales ?

Réponse : – Oui, la règle de confidentialité HIPAA doit être respectée pour la désidentification des données médicales ; en outre, la loi réglemente la manière dont les dossiers médicaux et autres informations de santé personnellement identifiables sont protégés au niveau national.

Parlez à un expert

En m'inscrivant, je suis d'accord avec Macgence Confidentialité et Conditions d’utilisation et je donne mon consentement pour recevoir des communications marketing de Macgence.

Tu pourrais aimer

Comment les modèles d'IA collectent-ils des informations pour apprendre ?

Comment les modèles d'IA collectent-ils des informations pour apprendre ?

Les modèles d'IA populaires sont plus performants que les humains dans de nombreuses activités de science des données, comme l'analyse. Les modèles d'intelligence artificielle sont conçus pour imiter le comportement humain. Les réseaux de neurones artificiels et les algorithmes d'apprentissage automatique sont utilisés par les modèles d'IA, tels que les grands modèles de langage capables de comprendre et de produire le langage humain, pour simuler un processus décisionnel logique en utilisant […]

Modèles d'IA Actualités
Comment les startups du secteur de la santé utilisent-elles la PNL pour améliorer les soins aux patients ?

Comment les startups du secteur de la santé utilisent-elles la PNL pour améliorer les soins aux patients ?

Le traitement automatique du langage naturel (TALN) est l'une des technologies d'IA les plus innovantes et transforme le secteur de la santé jour après jour. Il permet aux ordinateurs de « lire » et de comprendre le langage humain. Imaginez-vous pouvoir passer au crible des dossiers médicaux désorganisés, simplifier les interactions entre patients et médecins, et même identifier les problèmes de santé […]

IA de santé Actualités
Agents IA

Comment les agents IA contribuent-ils à des expériences client personnalisées ?

Le facteur qui caractérise le plus notre époque moderne en matière d'expérience client est l'infinité de choix. Les clients disposent d'une multitude d'alternatives, et les entreprises ont du mal à se démarquer sur un marché saturé. Les agents IA constituent une solution qui permet de se démarquer et d'offrir des expériences client personnalisées à grande échelle. […]

Services d'agents IA Agents IA Actualités